CONTROL 6

P1. Sea (G,\star) un grupo Abeliano. Para todo $n\in\mathbb{N}$ definimos los subconjuntos

$$F_n := \{ g \in G \mid g^n = e \},\$$

donde e es el neutro del grupo G y $g^n = g \star g \star \cdots \star g$ (n veces).

- a) (2 pts.) Demuestre que F_n es subgrupo de G, para todo $n \in \mathbb{N}$. Indicación: Note que se cumple la siguiente igualdad, e indique a qué propiedades de \star se debe: $(x \star y)^n = x^n \star y^n$.
- b) (2 pts.) Sean $n_1, n_2 \in \mathbb{N}$ tales que $n_1 = kn_2 + 1$ para algún $k \in \mathbb{N}$. Demuestre que

$$F_{n_1} \cap F_{n_2} = \{e\}.$$

- c) (2 pts.) Si $G = \mathbb{Z}_4$ y la l.c.i \star corresponde a la suma $+_4$, calcule F_2 y F_3 .
- **P2.** Sea $(A, +, \cdot)$ un anillo commutativo, sin divisores de cero, de tres elementos distintos, $A = \{0, 1, x\}$, donde 0 es el neutro para la l.c.i. + y 1 es el neutro para \cdot .
 - a) (3 pts.) Complete las tablas para las operaciones + y ·, justificando adecuadamente cada valor.

+	0	1	x
0			
1			
\overline{x}			

•	0	1	x
0			
1			
x			

b) (3 pts.) Construya explícitamente un isomorfismo f entre $(A, +, \cdot)$ y alguna estructura $(\mathbb{Z}_p, +_p, \cdot_p)$, con $p \in \mathbb{N}$ apropiado. Es decir, diga los valores f(0), f(1) y f(x). Justifique que f cumple las propiedades pedidas.

TIEMPO: 1 hora 15 minutos.

No olvidar colocar nombre y RUT identificando sus hojas de respuestas.