

Control 6

- **P1.** a) Considere el subconjunto H de los números complejos definido por $H = \{a + bi \mid a, b \in \mathbb{Z}\}$. Denotamos por + la suma de números complejos y por \cdot el producto de números complejos. Se sabe (no lo demuestre) que $(H, +, \cdot)$ es un anillo conmutativo, donde el neutro para + corresponde a $0 \in \mathbb{C}$ y el neutro para \cdot corresponde a $1 \in \mathbb{C}$.
 - i) (1 pto.) Demuestre que $(H, +, \cdot)$ no tiene divisores de cero.
 - ii) (2 pts.) Demuestre que los únicos elementos invertibles de (H, \cdot) son 1, -1, $i \neq -i$.
 - b) Las siguientes dos tablas incompletas definen parcialmente las dos operaciones del cuerpo $(F, +, \cdot)$, donde $F = \{e, u, a, b\}$.

+	e	u	a	b
e	e	u	a	b
u	u	e		a
a	a			u
b	b			

	e	u	a	b
e				
u		u		
a			b	u
b				a

- i) (1 pto.) Considerando la información entregada por las tablas, demuestre que e debe ser el neutro para + y que u debe ser el neutro para \cdot .
- ii) (2 pts.) Considerando las propiedades que debe cumplir un cuerpo, complete las tablas de ambas operaciones. Justifique detalladamente su respuesta.
- **P2.** a) (3 pts.) Encuentre todos los números complejos $z \in \mathbb{C}$ que cumplen, simultáneamente, que $z^6 = 1$ y que $\bar{z}^2 + z = 0$.
 - b) (3 pts.) Calcule la parte real e imaginaria del número complejo

$$z = \frac{(1+i)^{100}}{(1+\sqrt{3}i)^{50}}.$$

Duración: 1h 30'.