CONTROL 5

- **P1.** a) (3 pts.) Muestre que el conjunto $A = \{q\sqrt{2} : q \in \mathbb{Q}\}$ es numerable.
 - b) (3 pts.) Probar que $B = \{\frac{n}{m}\sqrt{2} : n \text{ es un entero par y } m \text{ entero impar}\}$ es numerable.
- P2. Considere el siguiente conjunto de funciones

$$\mathcal{F} = \{ f : \mathbb{R} \longrightarrow \mathbb{R}, \text{ tal que } f(x) = ax + b. \text{ Con } a, b \in \mathbb{Q}, a \neq 0 \}.$$

Considerando (\mathcal{F}, \circ) , donde \circ es la composición de funciones, se pide

- a) (1,5 pts.) Probar que \circ es l.c.i en \mathcal{F} , es decir si $f, g \in \mathcal{F}$ entonces $f \circ g \in \mathcal{F}$. **Obs:** l.c.i significa ley de composición interna.
- b) (1,5 pts.) Verifique que $f = id_{\mathbb{R}}$ (función identidad en \mathbb{R}) es el neutro de \mathcal{F} para \circ .
- c) (1,5 pts.) Para cada $f \in \mathcal{F}$, determine su inverso f^{-1} para \circ . Verifique que $f^{-1} \in \mathcal{F}$.
- d) (1,5 pts.) Considere la función

$$\varphi: (\mathcal{F}, \circ) \longrightarrow (\mathbb{R}, \cdot)$$

$$f \longmapsto \varphi(f),$$

en donde (\mathbb{R},\cdot) · es la multiplicación de reales y para $f \in \mathcal{F}$ tal que f(x) = ax + b entonces $\varphi(f) = a$.

Demuestre que para todo $f, g \in \mathcal{F}$ se tiene que $\varphi(f \circ g) = \varphi(f) \cdot \varphi(g)$.

TIEMPO: 1 hora 15 minutos.

No olvidar colocar nombre y RUT identificando sus hojas de respuestas.