

Control 5

P1. a) Sea A el conjunto de los números reales que se pueden escribir como sumas de números enteros y múltiplos enteros de $\sqrt{2}$, es decir,

$$A = \{ n + m\sqrt{2} \mid n, m \in \mathbb{Z} \}.$$

- i) (3 pts.) Demuestre que (A, +) es un subgrupo de $(\mathbb{R}, +)$.
- ii) (1 pto.) Se define ahora $B = \{n + m\sqrt{2} \mid n, m \in \mathbb{N}\} \subseteq A$. Es (B, +) un subgrupo de $(\mathbb{R}, +)$? Justifique.
- b) (2 pts.) Sea P un conjunto numerable. Demuestre que $P \times \{1, 2, 3, 4, 5\}$ es numerable.
- **P2.** a) Sea (H, \triangle) una estructura algebraica asociativa y con neutro $e \in H$. Sea H^* el conjunto de los elementos de H que tienen inverso para \triangle , es decir,

$$H^* = \{ h \in H \mid \exists u \in H, (h \triangle u = e) \land (u \triangle h = e) \}.$$

Se sabe (no lo demuestre) que (H^*, Δ) es una estructura algebraica asociativa. (2 pts.) Demuestre que (H^*, Δ) es un grupo.

b) Sea $(\mathbb{Z} \times \mathbb{Z}, +)$ la estructura algebraica definida por

$$(a,b) + (c,d) = (a+c,b+d),$$

para todo $(a,b),(c,d) \in \mathbb{Z} \times \mathbb{Z}$. Se sabe que $(\mathbb{Z} \times \mathbb{Z},+)$ es un grupo abeliano con neutro (0,0) y tal que el inverso de $(a,b) \in \mathbb{Z} \times \mathbb{Z}$ es -(a,b) = (-a,-b) (no lo demuestre).

Considere la función $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}_{30}$ dada por $f(a, b) = [6(a + b)]_{30}$.

- i) (2 pts.) Demuestre que f es un homomorfismo de $(\mathbb{Z} \times \mathbb{Z}, +)$ en $(\mathbb{Z}_{30}, +_{30})$.
- ii) (2 pts.) Sea $L = \{(a, b) \in \mathbb{Z} \times \mathbb{Z} \mid f(a, b) = [0]_{30}\}$. Demuestre que (L, +) es un subgrupo de $(\mathbb{Z} \times \mathbb{Z}, +)$.

Duración: 1h 30'.