

Control 4

P1. Sea $n \in \mathbb{N}$, $n \geq 1$.

a) (3,0 pts.) Calcule (en función de n y sin usar inducción)

$$\sum_{k=1}^{n} \frac{2}{k(k+2)}.$$

b) (3,0 pts.) Calcule (en función de n y sin usar inducción)

$$\sum_{k=1}^{n} \frac{1}{k} \binom{n}{k-1} 5^k.$$

 $\underline{\text{Indicación:}} \text{ Recuerde que } \tfrac{1}{j} \binom{m-1}{j-1} = \tfrac{1}{m} \binom{m}{j} \text{ para todo } m \in \mathbb{N}, \, m \geq 1 \text{ y } j \in \{1,2,\ldots,m\}.$

P2. a) (2,0 pts) Sean $A,B,C\subseteq E$ conjuntos finitos. Pruebe que

$$|A\cup B\cup C|=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|.$$

b) Sea \mathcal{F} el conjunto de funciones de $\{1,\ldots,10\}$ en $\{1,2\}$, es decir,

$$\mathcal{F} = \{ f \mid f : \{1, \dots, 10\} \to \{1, 2\} \text{ es función} \}.$$

i) (2,0 pts.) Sea $j^* \in \{1,2\}$ fijo. Se define el conjunto F_{j^*} de todas las funciones $f \in \mathcal{F}$ tales que $f(j^*) = j^*$, es decir,

$$F_{j^{\star}} = \{ f \in \mathcal{F} \mid f(j^{\star}) = j^{\star} \}.$$

Pruebe que $|F_1| = |F_2| = 512$ y $|F_1 \cap F_2| = 256$.

ii) (2,0 pts) Muestre que hay 768 funciones $f \in \mathcal{F}$ tales que f(1) = 1 o f(2) = 2, es decir, pruebe que

$$|\{f \in \mathcal{F} \mid f(1) = 1 \lor f(2) = 2\}| = 768.$$

Duración: 1h 30'.