Control 3 MA1101 Introducción al Álgebra 2024-3

P1.

- (a) Sea (G, \cdot) un grupo.
 - (i) (1 puntos) Sea $n \in \mathbb{N}$, $n \ge 1$. Muestre (sin usar inducción) que si G es abeliano entonces

$$\forall a, b \in G \quad (a \cdot b)^n = a^n \cdot b^n$$

(ii) (2 punto) Muestre que si

$$\forall a, b \in G \quad (a \cdot b)^2 = a^2 \cdot b^2$$

entonces G es abeliano.

(b) Considere $E = \left\{ a + b\sqrt{2} : a, b \in \mathbb{Z} \right\}$ con la suma y el producto usual, es decir

$$\left(a + b\sqrt{2} \right) + \left(a' + b'\sqrt{2} \right) = (a + a') + (b + b')\sqrt{2} \qquad \left(a + b\sqrt{2} \right) \cdot \left(a' + b'\sqrt{2} \right) = aa' + 2bb' + (ab' + ba')\sqrt{2}$$

- (a) (1 puntos) Encuentre el neutro de la suma.
- (b) (1 puntos) ¿Existe el neutro de de la multiplicación? Justifique
- (c) (1 puntos) Encuentre los divisores de cero.

Observación: no es necesario mostrar que $(E, +, \cdot)$ es anillo.

P2.

(a) (3 puntos) Muestre (sin usar inducción) que para todo $n \in \mathbb{N}$, $n \ge 1$ se tiene que

$$(1 + i \tan \theta)^n + (1 - i \tan \theta)^n = 2 \sec^n \theta \cos n\theta$$

(b) (3 puntos) Para $\theta \in \mathbb{R}$ y $n \in \mathbb{N}$, $n \geqslant 2$ encuentre todas las soluciones complejas de

$$\sum_{k=0}^{n-1} z^k \cos(k\theta) = i \sum_{k=0}^{n-1} z^k \sin(-k\theta)$$

P3.

Sean $+ y \cdot el$ producto usual en \mathbb{C} . Definamos

$$S_1 = \{ z \in \mathbb{C} : |z| = 1 \}$$

- (a) (1.5 puntos) Decida si $z_1*z_2=z_1\cdot\overline{z}_2$ es una l.c.i. en S_1 o no
- (b) (1.5 puntos) Muestre que S_1 con la multiplicación usual es un subgrupo de $(\mathbb{C}\setminus\{0\},\,\cdot\,)$
- (c) (1.5 puntos) ¿Es $(S_1, +, \cdot)$ un anillo? Justifique.
- (d) (1.5 puntos) Y si cambiamos la suma usual por la suma de Hadamard dada por

$$z_1 \oplus z_2 = \frac{z_1 + z_2}{|z_1 + z_2|}$$

 $\operatorname{ces}\left(S_{1},\,\oplus\,,\,\cdot\,\right)$ un anillo?