CONTROL 3

Nota: Recuerde justificar adecuadamente sus argumentos; si está usando resultados conocidos, indíquelo claramente y verifique las hipótesis.

P1. Definimos el conjunto

$$A = \{X \subseteq \mathbb{N} \mid X \text{ es finito}\} \subset \mathcal{P}(\mathbb{N}).$$

a) (1.5 pts.) Demuestre que

$$A = \bigcup_{k \in \mathbb{N}} A_k,$$

donde $A_k = \binom{\mathbb{N}}{k} = \{Y \subseteq \mathbb{N} \mid |Y| = k\}.$

- b) (2.5 pts.) Demuestre que A_0 es finito y que para cada $k \in \mathbb{N} \setminus \{0\}$, A_k es numerable.
- c) (1 pt.) Aplique un resultado conocido para demostrar que A es numerable.
- d) (1 pt.) Decida si $B = \{X \subseteq \mathbb{N} \mid X \text{ es infinito}\}$ es numerable.

P2.

a) Sea $\mathcal{F} = \mathbb{R}^{\mathbb{N}} = \{f : \mathbb{N} \to \mathbb{R} \mid f \text{ es función}\}$. Definimos la ley de composición * en \mathcal{F} de la siguiente manera: Dados $f, g \in \mathcal{F}$,

$$(f * g)(n) = \sum_{i=0}^{n} f(i)g(n-i), \quad \forall n \in \mathbb{N}.$$

- a.1) (1 pt.) Demuestre que * es conmutativa.
- a.2) (2 pts.) Determine si $(\mathcal{F},*)$ admite neutro y, en caso afirmativo, encuéntrelo.
- b) Para el anillo $(\mathbb{Z}_n, +_n, \cdot_n)$ se define el conjunto de elementos invertibles

$$\mathbb{Z}_n^* = \{[a]_n \in \mathbb{Z}_n \mid \text{existe } [b]_n \text{ tal que } [a]_n \cdot_n [b]_n = [1]_n\}.$$

Asuma que $(\mathbb{Z}_9^*, \cdot_9)$ es grupo.

- b.1) (1 pt.) Demuestre que $[2]_9 \in \mathbb{Z}_9^*$ y que $[3]_9 \notin \mathbb{Z}_9^*$.
- b.2) (1 pt.) Demuestre que $H = \{[1]_9, [8]_9\}$ es subgrupo de $(\mathbb{Z}_9^*, \cdot_9)$ y que $A = \{[1]_9, [2]_9, [4]_9, [8]_9\}$ no lo es.
- b.3) (1 pt.) Encuentre las traslaciones $[8]_9 \cdot_9 H$, $[2]_9 \cdot_9 H$ y $[4]_9 \cdot_9 H$ del subgrupo H del item anterior.

P3. Considere un conjunto X con más de un elemento y el anillo $R = (\mathcal{P}(X), +, \cdot)$, donde

$$A + B := A\Delta B = A \setminus B \cup B \setminus A = (A \cup B) \setminus (A \cap B)$$
 y $A \cdot B = A \cap B$.

Por otra parte, considere el anillo $S = \mathbb{Z}_2^X$, es decir, $S = \{f : X \to \mathbb{Z}_2 \mid f \text{ función}\}$, con la suma y producto heredadas del anillo $(\mathbb{Z}_2, +_2, \cdot_2)$, es decir, si $f, g \in S$ entonces $f + g : X \to \mathbb{Z}_2$ y $f \cdot g : X \to \mathbb{Z}_2$ se definen mediante

$$(f+g)(x) := f(x) +_2 g(x), y (f \cdot g)(x) = f(x) \cdot_2 g(x).$$

a) Demuestre que la función $\varphi:R\to S,$ dada por $\varphi(A)=\chi_{\scriptscriptstyle A},$ donde

$$\chi_A(x) = \begin{cases} 1, & \text{si } x \in A \\ 0, & \text{si } x \notin A \end{cases},$$

es un isomorfismo de anillos, es decir, demuestre que

- a.1) (1.8 pts.) φ es homomorfismo de anillos.
- a.2) (1.2 pts.) φ es biyectiva.
- b) Sea $A \neq \emptyset$ subconjunto de X.
 - b.1) (2 pts.) Demuestre que A es divisor de cero en R si y solo si $\varphi(A)$ es divisor de cero en S.
 - b.2) (1 pt.) Considere $Y = \{x\} \subset X$. Use que $Y \cap X \setminus Y = \emptyset$ y el item anterior para encontrar dos divisores de cero en S.