

Control 3

P1. A partir de una relación \mathcal{R} en un conjunto A, se define una nueva relación $\mathcal{S}_{\mathcal{R}}$ en A mediante

$$\forall x, y \in A, \quad x\mathcal{S}_{\mathcal{R}}y \iff x\mathcal{R}y \land y\mathcal{R}x.$$

- i) (1.5 ptos.) Demuestre que $\mathcal{S}_{\mathcal{R}}$ es una relación simétrica.
- ii) (1.5 ptos.) Demuestre que si \mathcal{R} es refleja y transitiva, entonces la nueva relación $\mathcal{S}_{\mathcal{R}}$ es de equivalencia.
- iii) (1.5 ptos.) Recordemos la definición de la relación | de divisibilidad en el conjunto $\mathbb Z$ de los enteros:

$$\forall m, n \in \mathbb{Z}, \quad m | n \iff \exists k \in \mathbb{Z}, n = k \cdot m.$$

Sabemos que | es refleja y transitiva en \mathbb{Z} (NO necesita demostrarlo), por lo que, tomando como \mathcal{R} en ii) la divisibilidad |, $\mathcal{S}_{|}$ es de equivalencia.

Para $n \in \mathbb{Z}$ cualquiera, se pide determinar su clase de equivalencia respecto a la relación $\mathcal{S}_{|}$.

- iv) (1.5 ptos.) Si \mathcal{R} es una relación de orden en A, demuestre que $\forall x, y \in A, x \mathcal{S}_{\mathcal{R}} y \iff x = y$.
- **P2.** a) Sean A, B conjuntos, $C \subseteq A$ y $D \subseteq B$. Considere la función $f: A \times B \to A$ definida por f(x, y) = x.
 - i) (2.0 ptos.) Demuestre que $f^{-1}(C) = C \times B$.
 - ii) (2.0 ptos.) Si $D \neq \emptyset$, demuestre que $f(C \times D) = C$.
 - b) (2.0 ptos.) Sean A, B conjuntos y $g:A\to B$ una función que satisface la propiedad

$$\forall C, D \subseteq A, [C \subsetneq D \implies g(C) \neq g(D)].$$

Pruebe que g es inyectiva.

Observación: La notación $C \subsetneq D$ significa que $C \subseteq D$ pero $C \neq D$, por lo cual D tiene al menos un elemento que no pertenece a C.

Indicación: Utilice la propiedad satisfecha por g, con C, D adecuados.

 $\frac{\text{DURACION: 1 hora y 30 minutos.}}{\text{Justifique adecuadamente}} \text{ sus respuestas.}$ No olvide poner su NOMBRE y RUT en sus hojas de respuesta para identificarlas.

¡¡Mucho éxito!!