

Control 3

- **P1.** Sea $X \subseteq \mathbb{R}$ un subconjunto que satisface las siguientes condiciones:
 - i) $0 \in X$,
 - ii) $\forall r, t \in X, r + t \in X$.

(Se sabe que tanto $\mathbb N$ como $\mathbb Z$ satisfacen las condiciones anteriores).

Dado el subconjunto X, se define en \mathbb{R} la relación \mathcal{R}_X como sigue:

$$\forall x, y \in \mathbb{R}, \quad x \mathcal{R}_X y \iff (x - y) \in X.$$

- a) (3 pts.) Demuestre que, para todo $X \subseteq \mathbb{R}$ que satisface las condiciones i) y ii), \mathcal{R}_X es una relación refleja y transitiva.
- b) (1 pto.) Demuestre que $\mathcal{R}_{\mathbb{N}}$ es una relación de orden.
- c) (2 pts.) Demuestre que $\mathcal{R}_{\mathbb{Z}}$ es una relación de equivalencia. Además, demuestre que $[p]_{\mathcal{R}_{\mathbb{Z}}} = \mathbb{Z}$ para todo $p \in \mathbb{Z}$.

Indicación: Recuerde que puede usar las partes anteriores incluso si no las ha resuelto.

P2. Sea A un conjunto no vacío. Sea $\mathcal{F} = \{f : A \to A \mid f \text{ es una función}\}$, es decir, \mathcal{F} es el conjunto de todas las funciones de A en A. Sea $g : A \to A$ una función biyectiva. Se define la función $\varphi : \mathcal{F} \to \mathcal{F}$ por

$$\varphi(f) = g \circ f.$$

- a) Sea $\mathcal{H} \subseteq \mathcal{F}$ definido por $\mathcal{H} = \{f \colon A \to A \mid f \text{ es una función biyectiva}\}.$
 - i) (2 pts.) Demuestre que, para todo $h \in \mathcal{H}$, existe $f \in \mathcal{H}$ tal que $g \circ f = h$.
 - ii) (2 pts.) A partir de i), concluya la siguiente igualdad de conjuntos: $\varphi(\mathcal{H}) = \mathcal{H}$.
- b) (2 pts.) Demuestre que φ es biyectiva y calcule su inversa.

Duración: 1h 15'.