

Control 2

P1. i) (3.0 pts) Sea E un conjunto de referencia y $A, B \subseteq E$. Pruebe que

$$A = B \iff \mathcal{P}(A) = \mathcal{P}(B).$$

ii) (3.0 pts) Para cada $c \in \mathbb{R}$ se define el conjunto $A_c = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid 2x + 5y = c\}$. Demuestre que $\mathcal{A} = \{A_c \mid c \in \mathbb{R}\}$ es un partición de $\mathbb{R} \times \mathbb{R}$.

Nota: Recuerde que $\mathcal{C} \subseteq \mathcal{P}(E)$ es una partición de E si

- $\forall C \in \mathcal{C}, C \neq \emptyset.$
- $\forall C, C' \in \mathcal{C}, C \neq C' \implies C \cap C' = \emptyset.$
- **P2.** Sea E un conjunto de referencia y $A, B \subseteq E$. Se define $f: \mathcal{P}(A \cup B) \to \mathcal{P}(A) \times \mathcal{P}(B)$ tal que $f(X) = (X \cap A, X \cap B)$.
 - a) (2.4 pts) Considere $g: \mathcal{P}(A) \times \mathcal{P}(B) \to \mathcal{P}(A \cup B)$ tal que $g(W, Z) = W \cup Z$, verifique que $g \circ f$ es la función identidad (indique sobre qué conjunto), y concluya que f es inyectiva.
 - b) (2.4 pts) Pruebe que si $B = A^c$, entonces f es epiyectiva.
 - c) (1.2 pts) Muestre, con un contraejemplo, que si $A \cap B \neq \emptyset$, entonces f no es epiyectiva. Esto es, dé un ejemplo concreto de conjuntos A, B, E tales que A, $B \subseteq E$, $A \cap B \neq \emptyset$, y f no es epiyectiva.