

Control 2

- **P1.** a) (3.0 pts) Para $n \in \mathbb{N}$ se definen, $s_{2n} = \sum_{i=0}^{n} \binom{2n+1-i}{i}$ y $s_{2n+1} = \sum_{i=0}^{n+1} \binom{2(n+1)-i}{i}$.
 - Pruebe, sin usar inducción, que $\forall n \in \mathbb{N}, s_{2(n+1)} = s_{2n+1} + s_{2n}$.
 - b) Un alfabeto se define como un conjunto finito de símbolos o caracteres. Para un alfabeto A y $\ell \in \mathbb{N}$, $\ell \geq 1$, llamamos palabra de largo ℓ sobre el alfabeto A a una secuencia finita de caracteres en A. Por ejemplo, abba y aabaa son palabras sobre el alfabeto $A = \{a, b\}$, de largos 4 y 5 respectivamente.
 - b.1.) (1.5 pts) Sea $\ell \geq 1$. Determine el número de palabras de largo ℓ sobre el alfabeto $\{a,b\}$
 - b.2.) (1.5 pts) Sea \mathcal{S} el conjunto de palabras sobre el alfabeto $\{a,b\}$. Pruebe que \mathcal{S} es numerable.
- **P2.** Sea (G,\star) un grupo con neutro $e \in G$. Sea \mathcal{R} una relación de **orden** en G que verifica la siguiente propiedad,

$$\forall x, y, z \in G, \ x\mathcal{R}y \implies x \star z\mathcal{R}y \star z.$$

Sean $G_+ = \{g \in G \mid e\mathcal{R}g\} \text{ y } G_- = \{g \in G \mid g\mathcal{R}e\}.$

- a) (1.5 pts) Pruebe que $G_{+} \cap G_{-} = \{e\}.$
- b) (1.5 pts) Pruebe que $\forall g \in G, g \in G_+ \implies g^{-1} \in G_-$.
- c) (1.5 pts) Pruebe que (G_+, \star) es una estructura algebraica (es decir, que \star es una ley de composición interna en G_+).

Asuma que el resultado de la parte c) sigue siendo válido al reemplazar G_+ por G_- (no lo demuestre).

d) (1.5 pts) Pruebe que si G es abeliano, entonces (G_+, \star) y (G_-, \star) son estructuras algebraicas isomorfas.

Duración: 2 horas.