

Departamento de Ingeniería Matemática

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA1101 - Introducción al Álgebra. Primavera 2023.

CONTROL 1

Nota: Recuerde justificar adecuadamente sus argumentos; si está usando resultados conocidos, indíquelo claramente y verifique las hipótesis.

P1. a) (3 pts.) Sean p, q, r y s proposiciones lógicas. Demuestre por contradicción la siguiente tautología.

$$\{[(p \Rightarrow q) \Rightarrow r] \Rightarrow s\} \Rightarrow [(q \Rightarrow r) \Rightarrow (p \Rightarrow s)].$$

b) Considere los conjuntos $A = \{\frac{1}{4}, \frac{1}{2}, 1\}, B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ y la siguiente función proposicional para $\varepsilon \in A$ y $n, N \in B$:

$$P(\varepsilon, N, n) : n \ge N \Rightarrow \frac{2}{n+1} < \varepsilon.$$

Demuestre que las siguientes proposiciones son verdaderas

- 1) (1 pt.) $\forall n \in B, P(\frac{1}{4}, 8, n)$.
- 2) (2 pts.) $\forall \varepsilon \in A, \exists N \in B, \forall n \in B, P(\varepsilon, N, n).$
- a) Considere la secuencia de números dada por $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$, para $n \in \mathbb{N}$, $n \geq 1$. Por P2. ejemplo, $H_1 = 1$, $H_2 = 1 + \frac{1}{2}$, $H_3 = 1 + \frac{1}{2} + \frac{1}{3}$.
 - 1) (0.5 pts.) Encuentre una formula recursiva para H_n .
 - 2) (2.5 pts.) Demuestre por inducción que, para todo $n \ge 1$,

$$H_1 + H_2 + \dots + H_n = (n+1)H_n - n.$$

- b) Sea E un conjunto no vacío, y sean $X, Y, A, B, C \subseteq E$, con $C = (A \cup B)^c$.
 - 1) (1 pt.) Demuestre que $X \cap Y = \emptyset \iff X \triangle Y = X \cup Y$. [Sugerencia: recuerde que la diferencia simétrica se puede caracterizar mediante $X \triangle Y = (X \cup Y) \setminus (X \cap Y)$.
 - 2) (2 pts.) Demuestre que

$$(A\triangle B)\triangle C=A\cup B\cup C\quad\iff\quad A\cap B=\emptyset. \qquad \quad [\text{Sugerencia: use inciso anterior.}]$$

- P3. a) Sea $f: A \to B$ una función, con A y B conjuntos no vacíos.
 - 1) (2 pts.) Dado $b \in B$, sea $S_b = \{a \in A \mid f(a) = b\}$. Considere la familia $S = \{S_b \mid b \in B\}$. Determine las condiciones sobre f para que S sea una partición de A.
 - 2) (1 pt.) Encuentre una función f de modo que el conjunto \mathcal{S} definido en el inciso anterior no sea una partición de A. Explique sus argumentos para la elección de la función f.
 - b) Dados a, b números reales, definimos las funciones $f: \mathbb{R} \to \mathbb{R}$ y $g: [0, \infty) \to [b, \infty)$ de la siguiente manera:

$$f(x) = ax + 5,$$
 $g(y) = b + 2y^2.$

Definimos la función $h: \mathbb{R} \times [0, \infty) \to \mathbb{R} \times [b, \infty)$ mediante h(x, y) = (f(x), g(y)).

- 1) (2.5 pts.) Demuestre que h es biyectiva si y solo si $a \neq 0$.
- 2) (0.5 pts.) Si $a \neq 0$, determine h^{-1}