

Control 1

P1. a) (3 pts.) Sean p, q, r proposiciones arbitrarias. Demostrar sin usar tablas de verdad, que la siguiente proposición es una tautología

$$(p \Rightarrow q) \Longrightarrow [(\overline{q \wedge r}) \Rightarrow (\overline{p \wedge r})].$$

b) Sea E un conjunto de referencia , $E \neq \emptyset$, para $A \subseteq E$ considere la familia:

$$\mathcal{M}_A = \{ B \in \mathcal{P}(E) : A \cap B = \emptyset \}.$$

Demostrar que

- 1) (0.3 pts.) $\emptyset \in \mathcal{M}_A$ y $A^c \in \mathcal{M}_A$.
- 2) (1.2 pts.) Demuestre que las siguientes tres afirmaciones son equivalentes:
 - i) $A \in \mathcal{M}_A$
 - ii) $A = \emptyset$
 - iii) $\mathcal{M}_A = \mathcal{P}(E)$

Indique para cuál(es) $A \in E$ se tiene que $\mathcal{M}_A = \{\emptyset\}$. Justifique su respuesta.

- 3) (0.3 pts) $\forall B \in \mathcal{M}_A, \forall Y \in \mathcal{P}(E), B \cap Y \in \mathcal{M}_A$.
- 4) (1.2 pts.) $B \in \mathcal{M}_A \land C \in \mathcal{M}_A \Rightarrow B \setminus C \cup C \setminus B \in \mathcal{M}_A$.
- **P2.** a) (3 pts.) Probar, usando el principio de inducción matemática, que todo número natural $n \ge 8$ puede escribirse en la forma:

$$n = 3p + 5q,$$

donde $p, q \in \mathbb{N}$.

Obs: $0 \in \mathbb{N}$.

b) Dada una función $f: \mathbb{N} \longrightarrow \mathbb{N}$ diremos que f cumple la propiedad P si:

$$\forall n, m \in \mathbb{N}, m \neq 0 \implies f(n) < f(n+m).$$

- 1) (1 pto.) Pruebe que toda función $f: \mathbb{N} \longrightarrow \mathbb{N}$, que cumple la propiedad P, es inyectiva.
- 2) (1 pto.) Si $f: \mathbb{N} \longrightarrow \mathbb{N}$ cumple la propiedad P, ¿es necesariamente epiyectiva?. Demuestre su respuesta en caso de ser afirmativa o exhiba un contraejemplo.
- 3) (1 pto.) Pruebe que si $f: \mathbb{N} \longrightarrow \mathbb{N}$ cumple la propiedad P y es epiyectiva, entonces $f = \mathrm{Id}_{\mathbb{N}}$.

Duración: 2 horas.

Favor revisar el Instructivo para la entrega de evaluaciones 2020-1.