

Control 2 - Otoño 2024

- **P1.** Considere $L: \mathbb{R}^4 \to M_{2,2}(\mathbb{R})$ la función dada por $L\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \begin{pmatrix} a+b & c \\ d & a+b \end{pmatrix}$.
 - a) (1 p) Pruebe que L es transformación lineal.
 - b) (2 p) Calcule M la matriz representante de L con respecto a las bases: \mathcal{A} en la partida y \mathcal{B} en la llegada, donde

$$\mathcal{A} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}, \qquad \mathcal{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}.$$

- c) (3 p) Dé bases del núcleo de L, esto es Ker(L) y de la imagen de L, es decir Im(L). Calcule las dimensiones de Ker(L) e Im(L). ¿Es L inyectiva?, ¿Es L epiyectiva?, justifique.
- **P2.** a) (3 p) Considere la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$, cuya matriz representante con respecto a la base canónica \mathcal{C} en el espacio de partida y llegada es

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}.$$

Calcule N, la matriz representante de T, usando matrices de cambio de base, cuando la base en el espacio de partida y de llegada es

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}.$$

Indicación: puede dejar expresada N como producto de matrices que calculó y/o sus inversas.

- b) Sea U espacio vectorial de dimensión finita y $L:U\to U$ transformación lineal. En cada una de las siguientes afirmaciones diga si es verdadera o falsa. En caso de ser verdadera, justifique y en caso de ser falsa de un contraejemplo.
 - 1) (1.5 p) Si $Ker(L) = \{0\}$, entonces L es bivectiva.
 - 2) (1.5 p) Si $U = \mathbb{R}^2$ y M es la matriz representante de L con respecto a la base A en la partida y \mathcal{B} en la llegada (A y \mathcal{B} arbitrarias), entonces Ker(L) = Ker(M) donde $Ker(M) = \{x \in \mathbb{R}^2 : Mx = 0\}$.
- **P3.** Sea V un espacio vectorial sobre \mathbb{R} . Sean U y W dos subespacios vectoriales de V. Consideremos el conjunto de los pares ordenados $U \times W = \{(u,w) \colon u \in U, w \in W\}$, que con la suma y ponderación: para todo $u, \widetilde{u} \in U, w, \widetilde{w} \in W, \lambda \in \mathbb{R}$

$$(u, w) + (\widetilde{u}, \widetilde{w}) = (u + \widetilde{u}, w + \widetilde{w}), \qquad \lambda(u, w) = (\lambda u, \lambda w),$$

es un espacio vectorial sobre \mathbb{R} con neutro (0,0). Sea $T: U \times W \to V$ dada por T((u,w)) = 2u - w.

- a) (2 p) Demuestre que T es una función lineal.
- b) (2 p) Sean $\mathcal{B}_U = \{u_1, u_2\}$ y $\mathcal{B}_W = \{w_1, w_2\}$ bases de U y W respectivamente. Se sabe que $\mathcal{B}_{U \times W} = \{(u_1, 0), (u_2, 0), (0, w_1), (0, w_2)\}$ es base de $U \times W$. Supongamos que $\mathcal{B}_V = \{u_1, u_2, w_1, w_2\}$ es base de V. Encuentre la matriz representante de T en las bases $\mathcal{B}_{U \times W}$ y \mathcal{B}_V .
- c) (2 p) Si $V = U \oplus W$, demuestre que $Ker(T) = \{(0,0)\}.$

Tiempo: 3.0 hrs.