Álgebra Lineal Otoño 2023- Control 2 Octubre 28, 2023

- **P1.** Considere la transformación $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y+z \\ x+2y+2z \\ x+3y+3z \end{pmatrix}$
 - (a) (1.5 puntos) Pruebe que T es lineal. Determine A la matriz representante de T con respecto a la base canónica \mathcal{B} en el espacio de partida y de llegada. Recuerde que

$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

- (b) (4.5 puntos) Determine bases de Ker(T), el núcleo de T, y de Im(T), la imagen de T. Calcule dim(Ker(T)) y dim(Im(T)). ¿Es T inyectiva?
- **P2.** Considere la transformación lineal $L: M_{2,2} \to \mathcal{P}_3(\mathbb{R})$ dada por $L\begin{pmatrix} a & b \\ c & d \end{pmatrix} = a + (a+b)X + cX^2 + (c+d)X^3$
 - (a) (2 puntos) Determine la matriz representante de L con respecto a la base canónica \mathcal{C} de $M_{2,2}$ y la base canónica \mathcal{D} en $\mathcal{P}_3(\mathbb{R})$, donde

$$\mathfrak{C} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\},\,$$

$$\mathcal{D} = \left\{1, X, X^2, X^3\right\}.$$

(b) (2 puntos) Usando matrices de cambio de bases determine la matriz representante de L con respecto a la base \mathcal{E} en el espacio de partida y la base canónica \mathcal{D} en la llegada, donde

$$\mathcal{E} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}.$$

- (c) (2 puntos) Pruebe que L es un isomorfísmo.
- **P3.** (a) (3 puntos) En este problema todas las transformaciones lineales están definidas en U a valores en U.
 - Suponga que $J:U\to U$ es lineal biyectiva, es decir un isomorfismo. Pruebe que $J^{-1}:U\to U$, la transformación inversa, es lineal y biyectiva.
 - Sean $T: U \to U$ y $S: U \to U$ dos transformaciones lineales. Decimos que T es semejante a S si existen isomorfismos J, L tales que $T = J \circ S \circ L$. Pruebe que si T es semejante a S entonces S es semejante a T.
 - (b) (3 puntos) Consideremos un espacio vectorial U de dimensión n y sea $T: U \to U$ una transformación lineal. Supongamos que T satisface la siguiente propiedad: cualquiera sea $u \in U$ tal que T(T(u)) = 0 entonces necesariamente T(u) = 0. Pruebe que los subespacios de U: Ker(T) y Im(T) satisfacen

$$U = Ker(T) \oplus Im(T)$$
.

Indicación: pruebe que $Ker(T) \cap Im(T) = \{0\}$ y piense en el Teorema del Núcleo-Imagen.

Tiempo del control 3 horas.