Control 3

P1. (a) (3.0 pts.) Sea B en $\mathcal{M}_{3,3}(\mathbb{R})$ dada por

$$B = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

encuentre sus valores propios, vectores propios asociados y dimensiones de los espacios propios (multiplicidad geométrica). Determine si B es diagonalizable.

(b) (3 puntos) Determinar para que valores del parámetro $a \in \mathbb{R}$, la siguiente matriz $A \in \mathcal{M}_{4,4}(\mathbb{R})$ es diagonalizable

$$A = \begin{pmatrix} 2 & a & 1 & 1 \\ 0 & 2 & -1 & 1 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 2 & 4 \end{pmatrix}.$$

P2. (a) (3.0 pts.) Sea $A \in M_{3,3}(\mathbb{R})$ simétrica que satisface: $\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$ es vector propio, $A \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ y

$$A \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Encuentre D diagonal, P invertible tal que $P^{-1}=P^t$ de manera que $A=PDP^t$.

(b) (3.0 pts.) Supongamos que $A \in \mathcal{M}_{n,n}(\mathbb{R})$ es diagonalizable. Pruebe que A^2, A^t y $\mathbb{I} + A$. son diagonalizables. Además si $\lambda_1, \dots, \lambda_n$ son los valores propios de A ¿Cuáles son los valores propios de A^2 , de A^t y los de $\mathbb{I} + A$?

Tiempo del control 2 hrs. Entregue a tiempo. Evite descuentos por atraso