Control 2

P1. Considere la transformación $T: \mathcal{M}_{2\times 2}(\mathbb{R}) \to \mathbb{R}^2$ dada por:

$$T\left(\begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}\right) = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

- I) (1 punto) Demuestre que T es lineal.
- II) (3 puntos) Calcule una base de Ker(T), el núcleo de T. Determine la dimensiones del núcleo y la dimensión de Im(T), la imagen de T.
- III) (2 puntos) Considere las bases canónicas

$$\mathcal{A} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \subseteq \mathcal{M}_{2 \times 2}(\mathbb{R}),$$

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \subseteq \mathbb{R}^2.$$

Determine $M \in \mathcal{M}_{2\times 4}(\mathbb{R})$, la matriz representante de T con respecto a las bases \mathcal{A} en la partida y \mathcal{B} en la llegada.

Comentario: Puede resolver II y III en el orden que más le acomode.

P2. 2.1) (3 Puntos) Supongamos que $T: \mathbb{R}^n \to \mathbb{R}^n$ es una transformación lineal que satisface la propiedad: para todo $x \in \mathbb{R}^n$ se tiene

$$T(T(x)) = T(x),$$

es decir T^2 , la composición $T \circ T$, es igual a T.

- I) (1 punto) Pruebe que para todo $x \in \mathbb{R}^n$ se satisface: x T(x) pertenece al Ker(T).
- II) (1 punto) Pruebe que $\mathbb{R}^n = Ker(T) + Im(T)$.
- III) (1 punto) Pruebe que $Ker(T) \bigcap Im(T) = \{0\}$ y concluya que $\mathbb{R}^n = Ker(T) \oplus Im(T)$
- **2.2)** (3 puntos) Considere $C = \{2x^2 1, x^2 + 1, 3\}$, subconjunto del espacio vectorial $\mathcal{P}_2(\mathbb{R})$ de los polinomios de grado menor o igual a 2 a coeficientes en \mathbb{R} . Sea W el subespacio generado por C, es decir

$$W = \langle \{2x^2 - 1, x^2 + 1, 3\} \rangle.$$

- I) (1.5 puntos) Encuentre un subconjunto de \mathcal{C} que sea base de W.
- II) (1.5 puntos) Extienda la base de W que obtuvo en el punto anterior a una base de $\mathcal{P}_2(\mathbb{R})$.

1

Tiempo del control 2 hrs. Entregue a tiempo. Evite descuentos por atraso