Control 3 - Otoño 2024

P1. Sea
$$A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ -1 & 1 & 0 & -1 \\ 0 & 0 & 3 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$
.

- a) (2.0 ptos) Determine todos los valores propios de A.
- b) (2.0 ptos) Para cada valor propio λ de A determine el subespacio vectorial de vectores propios asociados a λ , es decir, calcule $W_{\lambda} = \operatorname{Ker}(A \lambda I)$.
- c) (2.0 ptos) Encuentre matrices $P, D \in M_{4,4}(\mathbb{R})$ tales que D es diagonal, $PP^T = I$ y $A = PDP^T$.

Solución:

a) Por definición, el polinomio característico de A es

$$P_A(\lambda) = \text{Det}(A - \lambda I) = \begin{vmatrix} \begin{pmatrix} 1 - \lambda & -1 & 0 & 1 \\ -1 & 1 - \lambda & 0 & -1 \\ 0 & 0 & 3 - \lambda & 0 \\ 1 & -1 & 0 & 1 - \lambda \end{vmatrix}.$$

Expandiendo con respecto a la 3era columna de $A - \lambda I$ y aplicando el procedimiento estándar para el cálculo del determinante de una matriz de 3×3 , se verifica que

$$P_A(\lambda) = (3 - \lambda)((1 - \lambda)^3 + 2 - 3(1 - \lambda)) = (3 - \lambda)(3\lambda^2 - \lambda^3) = \lambda^2(3 - \lambda)^2.$$

Sigue que los valores propios de A son 0 y 3.

[1.0 ptos. por encontrar P_A – 0.5 ptos. por factorizar P_A – 0.5 ptos. por dar los valores propios de A. Descontar 0.5 ptos. por cada error aritmético, hasta un máximo de 1.0 ptos. de descuento.]

b) Resolviendo los respectivos sistemas lineales homogéneos, se verifica que:

$$W_{0} = \operatorname{Ker}(A - 0 \cdot I) = \operatorname{Ker} \begin{pmatrix} 1 & -1 & 0 & 1 \\ -1 & 1 & 0 & -1 \\ 0 & 0 & 3 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix} = \left\langle \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ -1 \end{pmatrix} \right\} \right\rangle,$$

$$W_{3} = \operatorname{Ker}(A - 3 \cdot I) = \operatorname{Ker} \begin{pmatrix} -2 & -1 & 0 & 1 \\ -1 & -2 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 1 & -1 & 0 & -2 \end{pmatrix} = \left\langle \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \\ 1 \end{pmatrix} \right\} \right\rangle.$$

[0.5 ptos. por los generadores de W_0 y 0.5 ptos. por los de W_3 – descontar 0.3 ptos. por cada error aritmético.]

Aplicando Gram-Schmidt para obtener bases ortonormales de W_0 y W_3 a partir de los respectivos generadores recién encontrados, se obtiene que:

$$W_{0} = \left\langle \left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ 0 \\ -\frac{2}{\sqrt{6}} \end{pmatrix} \right\} \right\rangle,$$

$$W_{3} = \left\langle \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \end{pmatrix} \right\} \right\rangle.$$

[0.5 ptos. por la base ortonormal de W_0 y 0.5 ptos. por la de W_3 – Descontar 0.3 ptos. por cada error aritmético y 0.5 ptos. por cada dimensión de alguno de los W_{λ} que no coincida con la multiplicidad algebraica de λ del polinomio P_A obtenido en la parte anterior.] Importante, si la ortonormalización se resuelve en la parte c el punto asignado a esta parte pasa a ese ítem.

c) Por el Teorema de Diagonalización de Matrices Simétricas, directo de las partes anteriores, se tiene que $A=PDP^T$ con

$$D = \begin{pmatrix} 0 & & & \\ & 0 & & \\ & & 3 & \\ & & & 3 \end{pmatrix} \qquad y \qquad P = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ 0 & 0 & 1 & 0 \\ 0 & -\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \end{pmatrix}.$$

[1.0 ptos. por cada matriz. Restar 1.0 ptos. si el orden de las columnas en P no coincide con el orden de los valores propios asociados en D, o si $PP^T \neq I$. No penalizar por otros errores producto de acarreo de partes anteriores.]

P2. a) (3.0 ptos) Sea $M \in M_{2,2}(\mathbb{R})$ simétrica y $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ una solución del sistema homogéneo Mx = 0. Sabiendo que 1 es valor propio de M, encuentre M.

Solución: Primera Forma: Como $Mu = 0 = 0 \cdot u$, sigue que $\widehat{u} = u/||u|| = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ es vector propio de M asociado al valor propio 0.

Como vectores propios asociados a valores propios distintos de una matriz simétrica son ortogonales [1.0 ptos. por mencionar este resultado], de un cálculo sencillo, sigue que

$$W_1 = \langle \{\widehat{u}\}\rangle^{\perp} = \left\langle \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \right\rangle.$$

Luego, $v = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ es vector propio de M asociado al valor propio 1, es decir, Mv = v [1.0 ptos. por dar un vector propio asociado a 1].

Observando que $\hat{v} = v/\|v\| = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$, es vector propio de M asociado al valor propio 1, sigue que \hat{u}, \hat{v} es base de vectores propios de M asociados a los valores propios 0 y 1, respectivamente. Luego,

$$M = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$
 ([1.0 ptos.])

Segunda Forma: Como $Mu = 0 = 0 \cdot u$, sigue que $\widehat{u} = u/||u|| = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$ es vector propio de M asociado al valor propio 0.

Como vectores propios asociados a valores propios distintos de una matriz simétrica son ortogonales [1.0 ptos. por mencionar este resultado], de un cálculo sencillo, sigue que

$$W_1 = \langle \{\widehat{u}\}\rangle^{\perp} = \left\langle \left\{ \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \right\rangle.$$

Luego, $v = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ es vector propio de M asociado al valor propio 1, es decir, Mv = v [1.0 ptos. por dar un vector propio asociado a 1]. Como M es matriz simétrica a coeficientes reales, sabemos que existen $x, y, z \in \mathbb{R}$ tales que

$$M = \begin{pmatrix} x & y \\ y & z \end{pmatrix}.$$

Por otro lado,

$$Mu = 0 \cdot u \iff x + y = 0, y + z = 0,$$

 $Mv = 1 \cdot v \iff x - y = 1, y - z = 1.$

Resolviendo, se obtiene que

$$M = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$
 ([1.0 ptos.])

Tercera Forma:

Como M es matriz simétrica a coeficientes reales, sabemos que existen $x,y,z\in\mathbb{R}$ tales que

$$M = \begin{pmatrix} x & y \\ y & z \end{pmatrix}.$$
 ([1.0 ptos.] Id que es simétrica)

Por otro lado,

$$\begin{aligned} Mu &= 0 \cdot u \iff x+y=0, \ y+z=0, \\ x &= -y, \ z=-y=x \end{aligned} \tag{[\textbf{1.0 ptos.}]}$$

Como 1 es valor propio de M

$$Det(M-I) = 0 \iff (y+1)^2 - y^2 = 0$$

Resolviendo, se obtiene que

$$\begin{split} y &= -\frac{1}{2} \\ \Longrightarrow M &= \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}. \end{split} \tag{[\textbf{1.0 ptos.}]}$$

b) (3.0 ptos) Sean $u_1, u_2, w \in \mathbb{R}^4$ tales que

$$u_1 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \quad \mathbf{y} \quad w = \begin{pmatrix} 1\\1\\1 \end{pmatrix}.$$

Sea además $U = \langle \{u_1, u_2\} \rangle$. Encuentre $u \in U$ y $v \in U^{\perp}$ tales que w = u + v.

Solución: Como u_1 y u_2 son l.i. (ya que ninguno es múltiplo escalar del otro), sabemos que U tiene dimensión 2. Ya sea por cálculo directo de U^{\perp} o usando el resultado

$$\dim(U) + \dim(U^{\perp}) = \dim(\mathbb{R}^3),$$

se deduce que la dimensión de U^{\perp} es 1.

De la discusión previa y resultados conocidos, sabemos que existen $\{\widehat{u}_1, \widehat{u}_2\}$ y $\{\widehat{u}_3\}$ bases ortonormales de U y U^{\perp} , respectivamente. Como \widehat{u}_3 es ortogonal a \widehat{u}_1 y \widehat{u}_2 , sigue que, $\{\widehat{u}_1, \widehat{u}_2, \widehat{u}_3\}$ es base ortonormal de \mathbb{R}^3 y que

$$w = \underbrace{\langle w, \widehat{u}_1 \rangle \widehat{u}_1 + \langle w, \widehat{u}_2 \rangle \widehat{u}_2}_{u} + \underbrace{\langle w, \widehat{u}_3 \rangle \widehat{u}_3}_{v},$$

con $u \in U$ y $v \in U^{\perp}$. En otras palabras, basta tomar como u la proyección ortogonal de w sobre U y como v la proyección ortogonal de w sobre U^{\perp} .

 $Primera\ Forma$: Por definición de ortogonal de U, resolviendo un sistema lineal de dos ecuaciones en tres incógnitas, se obtiene que

$$U^{\perp} = \left\langle \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\} \right\rangle.$$

Luego, sigue que $U^{\perp} = \langle \{\widehat{u}_3\} \rangle$ donde

$$\widehat{u}_3 = egin{pmatrix} rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \\ 0 \end{pmatrix}, \qquad \qquad ([extbf{1.0 ptos. por encontrar base ortonormal de } U^\perp])$$

y que la proyección ortogonal de w sobre U^{\perp} es

$$v = \langle w, \widehat{u}_3 \rangle \widehat{u}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
. ([1.0 ptos. por determinar v correctamente])

Finalmente, fijamos

$$u = w - v = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
. ([1.0 ptos.])

Segunda Forma: Aplicando Gram-Schmidt al conjunto de vectores $\{u_1, u_2\}$ generadores de U, se obtiene que $\{\widehat{u}_1, \widehat{u}_2\}$ es base ortonormal de U, donde:

$$\widehat{u}_1 = \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} \quad \text{y} \quad \widehat{u}_2 = \begin{pmatrix} \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix}.$$
([1.0 ptos. por encontrar base ortonormal de U])

Luego, la proyección ortogonal de w sobre U es

$$u = \langle w, \widehat{u}_1 \rangle \widehat{u}_1 + \langle w, \widehat{u}_2 \rangle \widehat{u}_2 = \frac{1}{\sqrt{3}} \widehat{u}_1 + \frac{2}{\sqrt{6}} \widehat{u}_2 = \begin{pmatrix} -\frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{pmatrix} + \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$
([1.0 ptos. por determinar u correctamente])

Finalmente, fijamos

$$v = w - u = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
. ([1.0 ptos.])

Tercera forma: Calcular v como en la Primera Forma y u como en la Segunda Forma [0.5 ptos. por encontrar base ortonormal de U-0.5 ptos. por encontrar base ortonormal de $U^{\perp}-1.0$ ptos. por calcular u-1.0 ptos. por calcular v].

Cuarta forma: Calcular \hat{u}_1 y \hat{u}_2 como en la Segunda Forma [0.5 ptos.] y \hat{u}_3 como en la Primera Forma [0.5 ptos.]. Posteriormente, resolver el sistema lineal en 3 ecuaciones y 3 variables,

$$w = x\widehat{u}_1 + y\widehat{u}_2 + z\widehat{u}_3,$$

y así obtener $x = \frac{1}{\sqrt{3}}, y = \frac{2}{\sqrt{6}}, z = \sqrt{2}$ [1.0 ptos. por resolver correctamente el sistema]. Sigue que w = u + v donde

$$u = x\widehat{u}_1 + y\widehat{u}_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix} + \frac{2}{\sqrt{6}} \begin{pmatrix} \frac{1}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad ([\textbf{0.5 ptos.}])$$

$$v = z\widehat{u}_3 = \sqrt{2} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$
 ([0.5 ptos.])

1) (1.5 ptos)
$$M = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

2) (1.5 ptos)
$$M = A^T A$$
 donde $A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.

Solución:

1) Como la matriz es triangular inferior, sus valores propios son los elementos en la diagonal, es decir, 0 (de multiplicidad algebraica 3) y 1 (de multiplicidad algebraica 1) [0.5 ptos. por identificar los valores propios de M y sus multiplicidades algebraicas].

A continuación estudiamos la multiplicidad geométrica del valor propio 0. Para ello, calculamos su espacio de vectores propios:

$$W_0 = \text{Ker}(M - 0 \cdot I) = \text{Ker} \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \left\langle \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\} \right\rangle.$$

Sigue que la dimensión del espacio de vectores propios asociado al valor propio 0 (es decir, su multiplicidad geométrica) es 1 y no coincide con su multiplicidad algebraica [0.5 ptos. por determinar la multiplicidad geométrica de 1]. Luego M no es diagonalizable. [0.5 ptos. por concluir aplicando correctamente el criterio de diagonalización.]

- 2) Sin importar cuál sea la matriz A a coeficientes reales, se tiene que $M = A^T A$ es matriz simétrica a coeficientes reales, luego diagonalizable [1.5 ptos. por observar que M es simétrica y concluir].
- b) Sean $k, n \in \mathbb{N}$, $1 \le k < n$, y $\{v_1, ..., v_k\}$ una base ortonormal del sub-espacio vectorial V de \mathbb{R}^n . Considere $\lambda_1, ..., \lambda_k \in \mathbb{R}$ y la matriz de $n \times n$ dada por:

$$A = \lambda_1 v_1 v_1^T + \lambda_2 v_2 v_2^T + \dots + \lambda_k v_k v_k^T.$$

- 1) (1.0 ptos) Pruebe que v_i es vector propio de A asociado al valor propio λ_i .
- 2) (1.0 ptos) Pruebe que $v \in V^{\perp}$, $v \neq 0$, es vector propio de A e indique a qué valor propio está asociado.
- 3) (1.0 ptos) ¿Es diagonalizable la matriz A? Justifique.

Solución:

1) Como $\{v_1, ..., v_k\}$ es un conjunto ortonormal, tenemos que [0.2 ptos.]

$$v_j^T v_i = \langle v_j, v_i \rangle = \begin{cases} 1, & \text{si } i = j, \\ 0, & \text{si } i \neq j. \end{cases}$$

Luego,

$$Av_i = \left(\sum_{j=1}^k \lambda_i v_j v_j^T\right) v_i = \sum_{j=1}^k \lambda_j v_j (v_j^T v_i) = \lambda_i v_i,$$

 $([0.3 \ ptos. \ por \ cada \ una \ de \ las \ dos \ últimas \ igualdades])$

es decir, v_i es vector propio asociado al valor propio λ_i [0.2 ptos. por concluir].

2) Si $v \in V^{\perp}$, por definición de espacio otogonal y dado que $v_1,...,v_k \in V$, sigue que $v_j^T v = \langle v_j, v \rangle = 0$ para todo $j \in \{1,...,k\}$ [0.2 ptos]. Luego,

$$Av = \left(\sum_{j=1}^{k} \lambda_{i} v_{j} v_{j}^{T}\right) v = \sum_{j=1}^{k} \lambda_{j} v_{j}^{T}(v_{j}^{T} v) = 0,$$

([0.3 ptos. por cada una de las dos últimas igualdades]) es decir, v es vector propio asociado al valor propio 0 [0.2 ptos. por indetificar correctamente el valor propio].

3) Primera forma: Usando repetidamente que $(B+C)^T = B^T + C^T$, que $(MN)^T = N^T M^T$, y que $(\lambda Q)^T = \lambda Q^T$ si $\lambda \in \mathbb{R}$ (cuando las expresiones tienen sentido), se tiene que:

$$A^{T} = \left(\sum_{j=1}^{k} \lambda_{j} v_{j} v_{j}^{T}\right)^{T} = \sum_{j=1} \left(\lambda_{j} v_{j} v_{j}^{T}\right)^{T} = \sum_{j=1} \lambda_{j} v_{j} v_{j}^{T} = A,$$

([0.4 ptos. por la 2da, 0.4 ptos. por la 3era, y 0.2 ptos. por el último =) es decir, A es simétrica.

Segunda forma: Como $V \subseteq \mathbb{R}^n$, por resultado visto, sabemos que tiene una base ortonormal, digamos $v_{k+1},...,v_n$ (en efecto, por resultado visto, $\dim(V) + \dim(V^{\perp}) = n$, luego $\dim(V^{\perp}) = n - k$) [0.4 ptos. por calcular la dimensión de V^{\perp} (y justificar)]. Sigue que $v_1,...,v_n$ es una base ortonormal de \mathbb{R}^n , y de las dos partes anteriores, es además una base de vectores propios de A [0.4 ptos. por especificar y justificar la existencia de una base de \mathbb{R}^n de vectores propios de A]. Por definición de matrices diagonalizables, sigue que A es diagonalizable [0.2 ptos por aplicar criterio de diagonalización y concluir].

Duración: 3 horas.