

Control 1

P1. Considere el siguiente sistema lineal de ecuaciones reales donde $a \in \mathbb{R}$ es un parámetro:

- (a) (4.0 pts) Determine para que valores de $a \in \mathbb{R}$ el sistema:
 - i) Tiene solución única.
 - ii) No tiene solución.
 - iii) Tiene infinitas soluciones.
- (b) (2.0 pts) Fije a = 2 y encuentre todas las soluciones del sistema lineal.
- **P2.** (a) (2.0 pts) Sea $\{v_1, v_2\} \subseteq \mathbb{R}^n$ un conjunto linealmente independiente de vectores. Determine para que valores de $a \in \mathbb{R}$ el conjunto $\{v_1 + v_2, v_1 av_2\}$ es linealmente independiente.
 - (b) (2.0 pts) Sean A, I + A y $I + A^{-1}$ matrices invertibles. Pruebe que $(I + A^{-1})^{-1} = A(I + A)^{-1}$.
 - (c) (2.0 pts) Sean S y T subespacios vectoriales de un espacio vectorial V. Probar que

$$S \cup T$$
 es subespacio vectorial de $V \iff S \subseteq T$ o $T \subseteq S$.

<u>Indicación</u>: Pruebe que para $s \in S$ y $t \in T$, se tiene que si $s + t \in S \cup T$, entonces $t \in S$ o $s \in T$.

P3. Sean $A \in M_{1,2}(\mathbb{R})$ y $B \in M_{2,1}(\mathbb{R})$. Considere el subconjunto de las matrices reales de dos filas y dos columnas,

$$U = \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_{2,2}(\mathbb{R}) \mid AMB = 0 \right\}.$$

(a) (2.0 pts) Pruebe que cualquiera sean $A \in M_{1,2}(\mathbb{R})$ y $B \in M_{2,1}(\mathbb{R})$ se tiene que U es subespacio vectorial de $M_{2,2}(\mathbb{R})$.

Suponiendo que $A = \begin{pmatrix} 1 & -1 \end{pmatrix}$ y $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

- (b) (2.0 pts) Encuentre una base de U y de su dimensión.
- (c) (2.0 pts) Indique para cuál(es) de los siguientes subespacios vectoriales Z_i de $M_{2,2}(\mathbb{R})$, i=1,2, se cumple que $U \oplus Z_i = M_{2,2}(\mathbb{R})$. Justifique su respuesta en ambos casos.

$$Z_1 = \left\langle \left\{ \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \right\rangle$$
 y $Z_2 = \left\langle \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\} \right\rangle$.

Duración: 3 horas.