

Control 1

P1. Considere la función $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \frac{x^3}{x^2 + 1}.$$

- a) (1,2 pts.) Estudie la continuidad de f y calcule los límites de f hacia $\pm \infty$. Tiene f asíntotas verticales?
- b) (1,2 pts.) Estudie la derivabilidad de f, calcule f' donde f sea derivable y encuentre todos los puntos $\bar{x} \in \mathbb{R}$ donde $f'(\bar{x}) = 0$.
- c) (1,2 pts.) Encuentre los intervalos (si los hay) donde f es creciente y donde es decreciente. Indique (si los hay) cuáles son los puntos de mínimos y máximos, locales y globales, de f.
- d) (1,2 pts.) Determine dónde f es dos veces derivable, calcule f'' allí, y calcule todos los puntos $\bar{x} \in \mathbb{R}$ donde $f''(\bar{x}) = 0$.
- e) (1,2 pts.) Determine los intervalos donde f es convexa y donde es cóncava (si los hay).
- **P2.** a) (2,0 pts.) Sea $f:[a,b] \to \mathbb{R}$ una función continua, donde a < b. En base a los teoremas y definiciones, justifique que f es uniformemente continua en el intervalo abierto (a,b).
 - b) (2,0 pts.) Sean $f, g: \mathbb{R} \to \mathbb{R}$ funciones continuas tales que f(x) > 0 para todo $x \in \mathbb{R}$. Demuestre que si además, para todo $x \in \mathbb{R}$, se cumple que $(f(x))^2 = (g(x))^2$ (o sea, las funciones tienen igual cuadrado), entonces se cumple que

$$(\forall x \in \mathbb{R}, f(x) = g(x))$$
 ó $(\forall x \in \mathbb{R}, f(x) = -g(x)).$

- c) (2,0 pts.) Sean $f, g: \mathbb{R} \to [0,1]$ dos funciones continuas tales que f(0) = 0, g(0) = 1 y g(1) = 0 y sea $\alpha > 0$ fijo. Demuestre que existe $c \in \mathbb{R}$ tal que $f(c) = g(\alpha c)$.
- **P3.** a) Sea $f: \mathbb{R} \to (0, \infty)$ una función convexa, derivable y epiyectiva tal que f'(x) > 0 para todo $x \in \mathbb{R}$.
 - i) (1,0 pto.) Justifique que f es invertible.
 - ii) (1,0 pto.) Determine si f^{-1} es cóncava o convexa.
 - b) (2,0 pts.) Escriba el desarrollo de Taylor de orden 5 (polinomio y resto) para $f(x) = \cos(x)$ en torno a $\bar{x} = 0$. Úselo para demostrar que

$$\left|\cos(1) - \frac{13}{24}\right| \le \frac{1}{6!}.$$

c) (2,0 pts.) Calcule el límite

$$\lim_{x \to 0} \frac{\cos(x) - \left(1 - \frac{x^2}{2} + \frac{x^4}{4!}\right)}{x^6}.$$

<u>Indicación:</u> Puede hacer el cálculo directo o usar astutamente el desarrollo de Taylor ya encontrado en b).